

Secure Transfer Learning: Training Clean Model Against Backdoor in Pre-trained Encoder and Downstream Dataset

Yechao Zhang¹, Yuxuan Zhou¹, Tianyu Li¹, Shengshan Hu¹, Minghui Li¹, Wei Luo², Leo Yu Zhang³ ¹ HUST ² Deakin University ³ Griffith University

Backdoor Threat in Transfer Learning

Threat-1: Encoder Poisoning

The attacker introduces a backdoor into the pre-trained encoder, either by directly tuning it to embed a trigger, or by poisoning pre-training data.

Threat-II: Dataset Poisoning

The attacker introduces a backdoor by poisoning the downstream dataset with injected trigger patterns. The downstream classifier becomes poisoned.

Threat-III: Adaptive Poisoning

The attacker introduces a backdoor by poisoning the pre-trained encoder and the downstream dataset with the same backdoor trigger.

Reactive vs Proactive

Reactive solution: Identifying what constitutes poisoned features or characteristics (followed by eliminating these poison elements).

- Known threats
- What if the threats are unknown: e.g., novel types of attacks, different training paradigms.

Proactive mindset: identifying and amplifying clean elements to defend against unknown backdoor threats.

Experiments

Data	set	Dataset Poisoning	BadNets ACC↑ASR↓	Blended ACC↑ASR	SIG ↓ACC↑ASR↓	WaNet ACC↑ASR↓	TaCT ACC↑ASR、	_		dap-Patch CC↑ASR↓	Poisoning or Adaptive Poisoning						ıg	
	1	No Defense 75.64 90.24 75.65 50.35 76.51 59.97 76.			76.21 4.76	4.76 75.19 64.13 75.75 9.04 76.43 1.92			Threat Type				Threat-1		Threat-3			
STL-	10	Ours	64.08 2.15	65.59 1.60	62.85 6.00	64.55 1.60	66.26 1.00	65.93	3.24 6	52.55 1.08	Encoder Poisoning	Pre-training Dataset	Downstream Dataset	Methods	ACC ↑	ASR↓	ACC↑	ASR↓
CIFAR	R-10	No Defense Ours			2 84.72 89.10 87.31 2.54								STL-10	No Defense Ours	76.58 55.23	98.51 4.29	76.79 66.24	100.00 1.40
GTSRB		No Defense Ours			9 81.90 74.37 94.13 0.38						BadEncoder	CIFAR-10	GTSRB	No Defense Ours No Defense	80.77 90.86 65.35	99.63 3.90 97.56	78.45 91.92 67.93	99.97 0.01 99.44
SVHN		No Defense	59.80 99.42	60.11 98.3	59.83 97.58	59.65 15.77	59.91 91.90	59.84 8	89.90 5	9.87 70.86		STL-10	SVHN CIFAR-10	Ours No Defense	85.93 70.57	3.76 98.93	92.52 69.66	0.65 99.96
		Ours No Defense	91.19 4.14 85.06 92.85	90.88 6.82	91.09 3.22 2 86.29 55.33	90.11 1.45 85.71 3.33	91.25 2.92 85.88 95.00	90.22	1.31 9 24.06 8	00.95 1.23 35.71 6.48			GTSRB	Ours No Defense Ours	60.65 70.83 87.08	5.22 98.99 4.93	62.90 66.67 90.43	6.80 99.83 0.76
ImageN	et-10	Ours	80.46 3.86	81.65 2.42	82.00 2.85	83.71 0.94	84.53 3.33	80.24	1.94 8	31.71 2.48		-	SVHN	No Defense Ours	64.89 86.76	98.98 6.09	63.55 87.34	99.57 0.54
	Encoder and Dataset Poisoning									CIFAR-10	STL-10	No Defense Ours	71.85 54.54	97.72 6.28	72.39 66.38	99.94 5.19		
Encoder Poisoning								GTSRB			No Defense Ours No Defense	76.39 93.28 72.99	98.10 4.50 92.71	75.22 90.65 71.34	99.20 3.73 99.87			
		S1L-10	Ours 67.75 4.67	1.00 67.04 6.85	60.10 76.51 99.99 59. 6.68 53.10 3.88 2.5	3 67.54 5.11 1.82	67.46 5.72 4.25	68.75 6.65	1.40 68.28	6.03 6.22	DRUPE -	STL-10	SVHN CIFAR-10	Ours No Defense	87.27 71.14	6.47 80.49	89.57 71.21	3.60 99.66
BadEncoder	CIFAR-10	SVHN No	Ours 90.54 0.01 Defense 68.47 98.80	1.38 88.27 0.31 99.27 67.98 98.95	86.36 /3.16 99.15 /4.5 5.05 91.69 0.00 0.9 98.11 68.19 98.70 96.	91.88 0.04 0.66 63 67.99 98.78 11.86	92.60 0.80 0.00 68.19 98.80 94.12	87.79 0.00 68.07 98.81 9	3.30 93.90 90.81 68.26	0.27 0.29 97.90 71.75			GTSRB	Ours No Defense Ours	63.93 65.11 84.51	1.61 85.03 3.97	63.07 64.90 85.82	5.70 99.18 0.86
		CIFAR-10 No	Defense 69.56 97.88 Ours 63.27 5.76	78.00 70.33 98.39 4.76 62.73 6.28	0.10 92.80 4.80 0.6 71.98 69.72 99.83 77. 4.97 68.42 8.29 3.6 82.33 70.86 99.19 74.	42 69.94 99.82 9.12 44 62.63 6.61 4.47	69.66 99.66 70.00 65.47 6.36 0.00	69.84 99.77 1 64.38 7.71	16.28 70.03 2.03 63.05	99.76 5.78 6.08 0.13			SVHN	No Defense Ours	58.43 87.37	96.28 5.58	58.35 83.91	99.66 0.37
	STL-10	GISKB No	Ours 85.65 0.11 Defense 67.44 85.95	5.45 86.03 0.70 98.85 66.29 85.93	0.87 85.18 1.73 0.2 98.93 67.45 88.96 93.9 5.32 85.96 9.18 2.5	4 85.27 0.22 4.39 92 64.88 84.07 11.91	86.03 0.05 1.06 67.78 87.69 94.53	85.58 1.10 67.60 81.29 8	5.13 87.05 89.94 66.77	1.80 1.52 80.30 26.85		STL-10	STL-10	No Defense Ours	52.15 48.01	9.88 0.18	53.08 48.56	9.81 1.41
	CIFAR-10	STI 10 No	Defense 71.94 99.43	75.22 71.09 98.00	53.97 72.49 93.63 35 5.89 64.34 7.49 0.4	50 72.08 90.18 10.14	71.78 97.54 49.75	71.34 99.39	11.42 71.63	98.35 1.89	CTRL	CIFAR-10	CIFAR-10	No Defense Ours	75.31 56.66	44.90 3.07	75.63 59.35	53.56 3.72
DRUPE		0 GTSRB No	Defense 74.35 73.36 Ours 87.98 7.05	94.19 74.57 72.99 3.16 90.17 7.23	87.63 74.95 74.70 69 6.66 88.16 3.18 0.7 97.60 71.21 75.81 94.	57 74.48 73.02 6.58 4 89.14 3.61 0.47	74.67 72.91 87.07 89.93 5.82 6.82	73.95 73.01 6 89.14 5.05	61.30 73.76 7.63 89.87	72.97 14.79 3.10 1.85		GTSRB	GTSRB	No Defense Ours	66.78 82.42	6.54 0.87	64.29 88.11	26.11
		CIFAR-10 No	Ours 89.54 9.64 Defense 70.26 78.54	6.78 88.73 6.92 74.24 70.71 77.58	4.90 89.02 9.88 4.3 74.19 70.83 79.10 69.4 7.69 67.31 4.94 1.9	2 87.19 6.66 3.66 52 70.87 78.66 9.27	92.34 3.60 2.77 70.62 78.55 69.00	89.20 5.10 70.81 78.63	1.01 89.70 14.13 71.15	5.04 2.97 78.63 4.93	SSLBackdoor	ImageNet	ImageNet-10	No Defense Ours	82.85 72.35	36.48 0.42	83.29 81.35	87.94 1.76
	STL-10	GTSRB No	Defense 63.40 78.25 Ours 86.10 0.21	90.50 63.71 84.92 3.94 87.08 1.42	7.69 67.31 4.94 1.9 88.70 64.29 85.40 74 5.85 86.44 2.82 0.0 97.43 58.03 92.94 91	55 63.99 78.12 6.09 3 84.47 1.00 3.18	63.47 86.80 78.54 82.18 0.25 5.45	61.18 80.32 6 81.90 1.61	2.95 81.32	79.83 18.46 0.62 7.58	CorruptEncoder	ImageNet	ImageNet-10	No Defense Ours	82.35 72.82	58.46 1.03	82.47 81.47	92.12 4.79

Dataset Poisoning

Poisoning	Dataset	Dataset			•		
		CTT 10	No Defense	76.58	98.51	76.79	100.00
	CIFAR-10	STL-10	Ours	55.23	4.29	66.24	1.40
		GTSRB	No Defense	80.77	99.63	78.45	99.97
		GISKB	Ours	90.86	3.90	91.92	0.01
		CAZITAT	No Defense	65.35	97.56	67.93	99.44
BadEncoder		SVHN	Ours	85.93	3.76	92.52	0.65
DauEncouer		CIFAR-10	No Defense	70.57	98.93	69.66	99.96
	STL-10		Ours	60.65	5.22	62.90	6.80
		GTSRB	No Defense	70.83	98.99	66.67	99.83
			Ours	87.08	4.93	90.43	0.76
		SVHN	No Defense	64.89	98.98	63.55	99.57
		SVIIIV	Ours	86.76	6.09	87.34	0.54
		CTT 10	No Defense	71.85	97.72	72.39	99.94
		STL-10	Ours	54.54	6.28	66.38	5.19
	CIEAD 10	GTSRB	No Defense	76.39	98.10	75.22	99.20
	CIFAR-10		Ours	93.28	4.50	90.65	3.73
		CVIIDI	No Defense	72.99	92.71	71.34	99.87
DRUPE		SVHN	Ours	87.27	6.47	89.57	3.60
DRUPE	STL-10	CIFAR-10	No Defense	71.14	80.49	71.21	99.66
			Ours	63.93	1.61	63.07	5.70
		GTSRB	No Defense	65.11	85.03	64.90	99.18
			Ours	84.51	3.97	85.82	0.86
		SVHN	No Defense	58.43	96.28	58.35	99.66
		SVIIN	Ours	87.37	5.58	83.91	0.37
	CITY 10	CITY 10	No Defense	52.15	9.88	53.08	9.81
	STL-10	STL-10	Ours	48.01	0.18	48.56	1.41
CTDI	CIEAD 10	CIEAD 10	No Defense	75.31	44.90	75.63	53.56
CTRL	CIFAR-10	CIFAR-10	Ours	56.66	3.07	59.35	3.72
	CTCDD	CTCDD	No Defense	66.78	6.54	64.29	26.11
	GTSRB	GTSRB	Ours	82.42	0.87	88.11	1.91
CCT D . 1 1	T NY .	T N 10	No Defense	82.85	36.48	83.29	87.94
SSLBackdoor	ImageNet	ImageNet-10	Ours	72.35	0.42	81.35	1.76
Community and are	ImagaNat	ImagaNat 10	No Defense	82.35	58.46	82.47	92.12
CorruptEncoder	ImageNet	ImageNet-10	Ours	72.82	1.03	81.47	4.79

Why Current Defenses Fail in Transfer Learning

Current Defense Type I: Poison Detection in SL vs TL

Poison Detection: Identifying and removing abnormal samples from a poisoned dataset (Threat-II). Rely on latent separability or believe poison samples are low-loss data.

Under transfer learning (even assumes a clean validation dataset):

- latent separability assumption does not hold, the poison samples and benign samples are not easily separable.
- low-loss data are not excessively poison samples.

Current Defense Type II: Poison Suppression in SL vs TL

Poison Suppression: Train a clean model from poisoned dataset by suppressing backdoor feature (Threat-II and III).

• Current poison suppression believes backdoor feature learn faster than benign feature.

Under transfer learning,

backdoor feature does not necessarily learn faster than benign feature.

Current Defense Type III: Poison Removal in SL vs TL

Poison Removal: reconstructing a clean model by direct modifying, regardless of how the backdoor was injected (Threat-I, II and III).

• Current poison removal requires a hold-out clean dataset or assumes certain property to determine backdoor-related neurons.

Under transfer learning (without access to clean data),

Blindly making assumptions on what kind of neurons are more likely to be responsible for backdoor, is also unreliable.

Our Proactive Design: Trusted Core Bootstrapping

Identifying clean elements (data and neuron/channel):

- **Sifting A Clean Set:**
 - Majority Rule: A high-credible sample should belong to the majority group of samples in a DNN layer.
 - Consistency Rule: A high-credible sample should have consistent nearest neighbors from its class across different DNN layers.
- Filtering the Encoder Channel:
 - Selective Unlearning:
 - Filter Recovering:
 - Channel Filtering: keep the channels with larger mask values.

Bootstrapping Learning (amplifying clean elements):

- Optimization of Untrusted Channels: $\min_{\phi,\psi} \mathbb{E}_{(x,y)\in\mathcal{D}_{\text{clean}}} \left[\ell\left(f(\phi)\circ g(x;\psi\cup\chi),y\right)\right]$
- Clean Data Pool Expansion with Loss Guidance: Incorporate samples with the lowest loss from the entire set into the clean pool.
- Clean Pool Expansion with Meta Guidance:

 $Loss_1 \leftarrow \{\ell(f(\phi) \circ g(x; \phi \cup \chi), y) \mid (x, y) \in \mathcal{D} \setminus \mathcal{D}_{clean}\}; \\ Loss_2 \leftarrow \{\ell(f(\phi') \circ g(x; \phi' \cup \chi), y) \mid (x, y) \in \mathcal{D} \setminus \mathcal{D}_{clean}\};$

Incorporate samples with the smallest loss reduction $Loss_1 - Loss_2$ into the clean pool.

