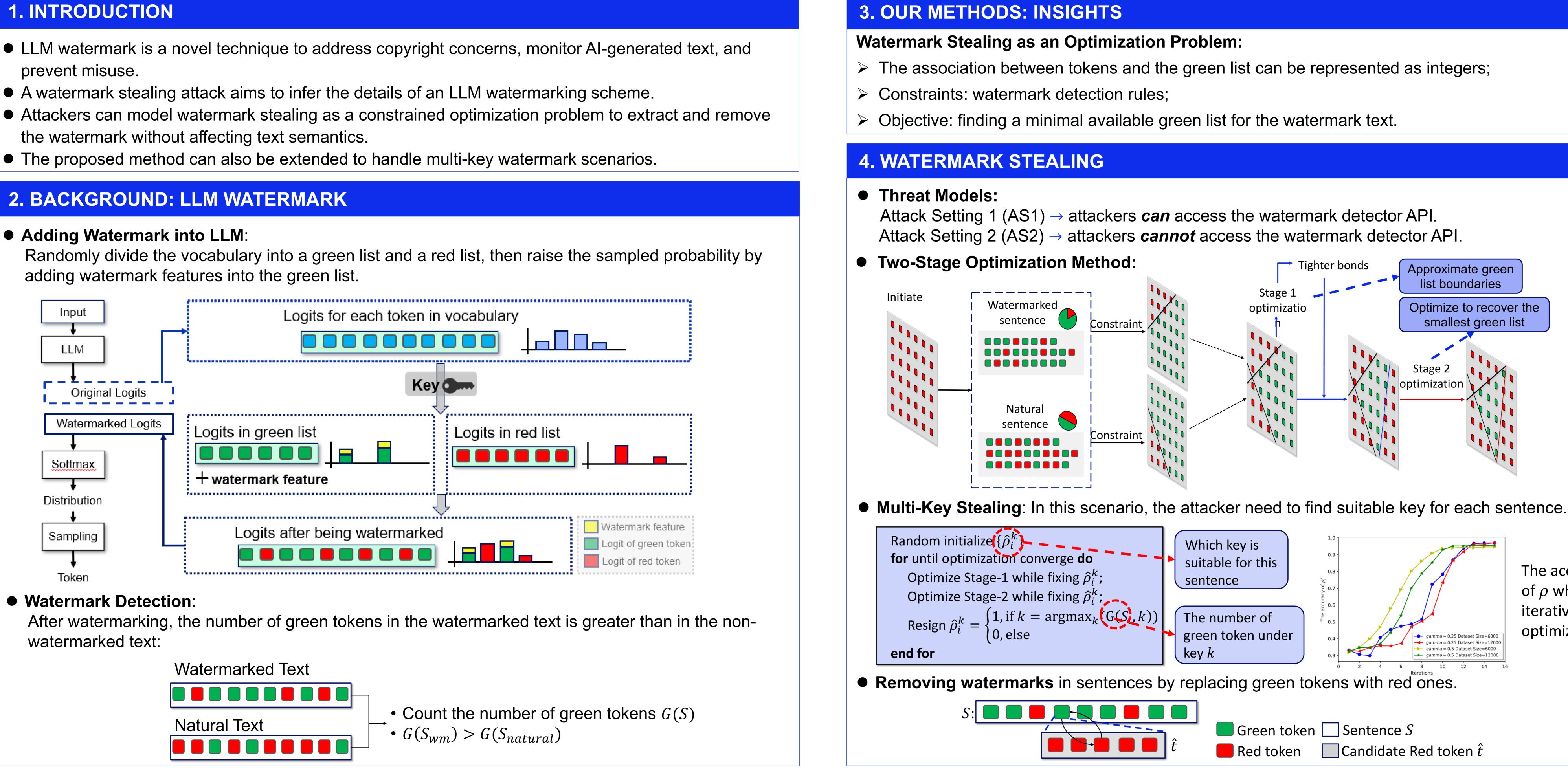


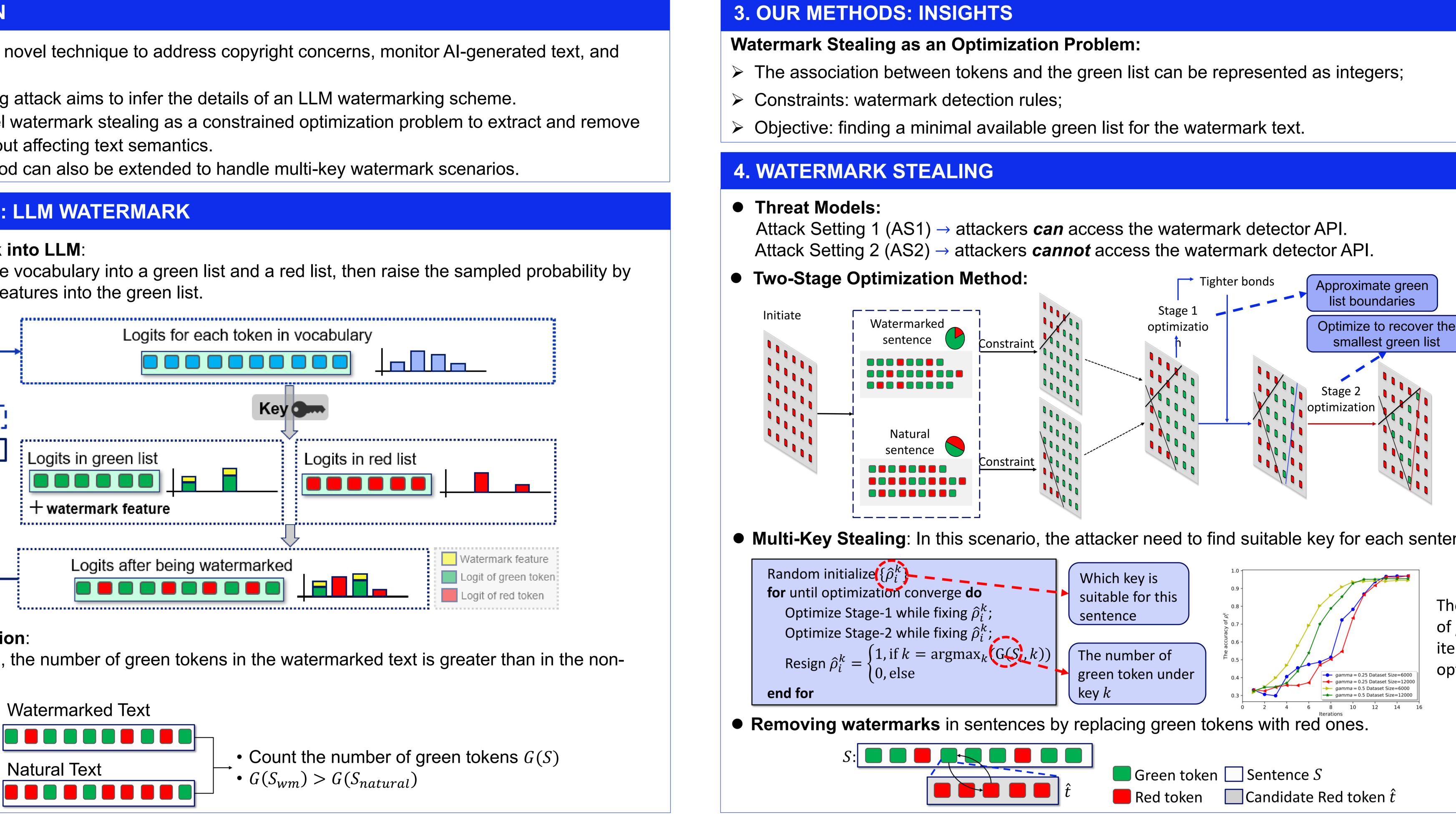
1. INTRODUCTION

- prevent misuse.
- the watermark without affecting text semantics.

• Adding Watermark into LLM:



• Watermark Detection:



5. RESULTS

• **Stealing performance** against LLaMA-2-7B under AS1 and AS2

Watermark	Dataset	Ours (AS1)			Freq. (AS1)			Ours (AS2)			Freq. (AS2)		
setting	size	N_g	N_t	Precision(↑)	Ng	N_t	Precision(1)	Ng	N_t	Precision(1)	Ng	N _t	Precision(\uparrow)
$\begin{array}{l} \gamma = 0.25\\ \delta = 2 \end{array}$	4000	1064	885	83.18%	5154	2547	49.42%	3165	2003	63.29%	6032	2782	46.12%
	10000	1431	1224	85.53%	5519	2970	53.81%	2852	2069	72.55%	6613	3223	48.74%
	20000	1396	1256	89.97%	5494	3181	57.90%	2582	2056	79.63%	6727	3505	52.10%
	40000	2146	1912	89.10%	5425	3335	61.47%	2393	1990	83.16%	6680	3693	55.28%
$\gamma = 0.25$ $\delta = 4$	4000	732	678	92.62%	4350	2867	65.91%	3884	2813	72.43%	4392	2882	65.62%
	10000	780	731	93.72%	4704	3259	69.28%	4466	3347	74.94%	4736	3275	69.15%
	20000	867	803	92.62%	4895	3498	71.46%	4443	3481	78.35%	4937	3517	71.24%
	40000	933	861	92.28%	5020	3737	74.44%	4969	3923	78.95%	5062	3754	74.16%

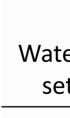
https://github.com/plll4zzx/mip_watermark_stealing

UTS UTS CRICOS PROVIDER CODE: 00099F / UTS TEQSA PRV12060

Stealing Watermarks of Large Language Models via Mixed Integer Programming Zhaoxi Zhang, Xiaomei Zhang, Yanjun Zhang, Leo Yu Zhang, Chao Chen, Shengshan Hu, Asif Gill, Shirui Pan University of Technology Sydney, Griffith University, Royal Melbourne Institute of Technology, Huazhong University of Science and Technology

• Experimental Settings: LLM: OPT-1.3B, LLaMA-2-7B; Dataset: C4; Solver for the Mixed Integer Programming: Gurobi. • **Removal performance** against LLaMA-2-7B under AS1 and AS2

- N_q : the number of tokens in the stolen green list
- N_t : the number of **true** green tokens in the stolen green list
- Precision= N_a/N_t
- Precision Average higher 18.23% / 9.52% in AS1 / 2



 $\gamma =$

				AS1		AS2					
termark etting	Dataset size	G^{b}_{avg}	$G^a_{avg}(\downarrow)$		$GRR(\downarrow)$		G^{b}_{avg}	$G^a_{avg}(\downarrow)$		GRR(↓)	
			Ours	Freq.	Ours	Freq.	Gavg	Ours	Freq.	Ours	Fre
= 0.25 $\delta = 2$	4000	68.01	11.24	21.54	28.55%	52.56%	71.17	10.38	36.62	14.58%	51.4
	10000	68.01	11.17	19.89	21.19%	50.84%	71.17	9.62	35.84	13.52%	50.3
	20000	68.01	8.19	19.27	21.05%	50.37%	71.17	9.53	35.10	13.40%	49.3
	40000	68.01	8.42	18.80	13.44%	50.41%	71.17	9.64	34.90	13.55%	49.0
= 0.25 $\delta = 4$	4000	52.45	7.12	15.02	31.11%	47.81%	71.13	8.32	34.36	11.70%	48.3
	10000	52.45	6.63	13.66	29.42%	47.49%	71.13	7.45	34.09	10.47%	47.9
	20000	52.45	6.47	13.17	29.34%	48.35%	71.13	7.38	34.63	10.38%	48.6
	40000	52.45	6.45	12.91	28.97%	48.81%	71.13	7.58	34.88	10.66%	49.0

The accuracy of ρ while iterative optimization

- G_{avg}^{b} : average number of green .46% .35% .30% .92% .68% .04%
 - tokens *before* removal • G^{a}_{avg} : average number of green tokens *after* removal • GRR= G_{avg}^a/G_{avg}^b : the rate of remaining green tokens • GRR Average lower 29.98% / 38.81% in AS1 / 2