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Background: Transfer Attack

Adversary

White-box surrogate model

Optimizing adversarial examples
Different AE generation methods can be applied

Transfer to

Unknown target
model

Remark: Most work focus on optimizing the adversarial examples, we 
investigate what kind of surrogates are more suitable for transfer attacks.

Adversarial transferability: the ability of an adversarial example to generalize across different models.



Let’s start from an interesting observation
Adversarial training with small perturbation leads to better surrogates

Transfer attack using adversarial training surrogates   

Question: Why does “little robustness” exhibit this benefit whereas 
“much robustness” does not?



Intuitions and deciding factors behind adversarial transferability 
Two factors that are believed to be essential to adversarial transferability  

Flat optima is more stable, more likely to transfer to 
target model. 

Model smoothness: how smoothness the input loss  
landscape in the model.

Gradient direction between surrogate and target 
models is more similar, more likely to transfer.

Gradient similarity: how smoothness the minimum 
found in the model.
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The trade-off between smoothness and similarity in 
adversarial training 

Model smoothness in adversarial training

The bigger the adversarial budget, the smoother 
the model.

The bigger the adversarial budget, the more 
dissimilar between the gradient directions.

Gradient similarity in adversarial training

Conjectures:
• The quick improvement in transferability for small ε occurs could be the cause of the rapid 

gains in smoothness and small decays in gradient similarity.
• The degradation in transferability for large ε occurs may because the smoothness gains 

have approached the limit while gradient similarity continues to decrease. 



Why adversarial training benefits smoothness? 

non-smoothness

Applying Taylor expansion, If 𝑥 is a local minimum, then

Thus, it also provably suppresses the second-order derivatives.

This can be intuitively explained and theoretically proved



But why adversarial training degrade similarity? 
This cannot be well-explained theoretically

A long-held belief in the literature:

“Clean data lies in a low-dimensional manifold. Even though the adversarial 
examples are close to the clean data, they lie off the underlying data manifold.”

We believe the off-manifold adversarial samples in the training data cause the 
gradient dissimilarity.

We make an intuitive hypothesis:

Data distribution shift impairs gradient similarity*. 

*Note that there is a premise that target model does not change the data distribution 



Verifying the distribution shift hypothesis

Similarity between augmented models and target models

Experimental evaluations on 4 data augmentations 

• The results support the hypothesis that 
data distribution shift impairs gradient 
similarity.

• Similarity degradation:
The distribution shift in        may have a greater 
negative impact on similarity than that in 
     CO        MU          CM                   LS 
Cutout < Mixup = Cutmix < Label smoothing 



Data augmentation generally yields worse surrogates

Smoothness in data augmentations 

• The smoothness in data augmentation does not exhibit 
a uniform tendency.

• However, the transfer attack success rate are uniformly 
worse than the baseline.

Trade-off under data augmentations is quite complex, and 
no single augmentation can produce good surrogates 

Transfer attack success rate under data augmented surrogates



How to stably find better surrogates?
Resorting to smoothness-promoting methods that does not change data distribution 

The rationale is:
• In the real scenario, similarity is a pair-wise metric referring target model, which we 

cannot access.
• We do not know what kind of approach will benefit similarity.
• We do know what will degrade similarity.
• Smoothness is a standalone concept, which can be independently regulated and 

measured.

Thus, we believe we can stably increase the transferability by promoting the 
smoothness of surrogate alone while do not change the data distribution shift.



Promoting smoothness through input gradient regularizations 

Input gradient regularization (IR): 

• The most direct way to promote smoothness is to minimize the loss surface curvature,               

• However, computing the second-order derivative is extremely expensive, let alone optimizing it.

Solution: Approximating the first-order derivatives through first-order derivative. 

Input Jacobian regularization (JR): 



Promoting smoothness through weight gradient regularizations 
• Researches have proved that the gradient regularizing pressure on the weight space
can transfer to the input space                       .

• Thus, we also consider two weight space gradient regularizations as follows:

Explicit gradient regularization (ER): Sharpness-aware minimization (SAM*): 

*Recent researches establish SAM as a special kind of gradient normalization.



Gradient regularizations yield better surrogates 
These results indicate:
• All gradient regularizations generally improve the 

smoothness and transferability. 
• IR, JR yield better smoothness than ER, SAM.
• Surprisingly, in terms of transferability, SAM is 

generally better than IR and JR in CIFAR-10, and worse 
in ImageNette.

It suggests an overall examination of these training 
mechanisms, as they may weigh differently on similarity. 



An overall examination on all the training mechanisms

Examine the gradient similarity between all the 
training mechanisms:
• SAM improves gradient similarity towards 

every training solution, (compared to ST). 
• Input regularizations (IR, JR) and adversarial 

training (AT) align with each other very well.

Observations on model smoothness:
• IR, JR yield better model smoothness.

SAM and input regularizations (JR, IR) are highly complementary!

Observations on transferability:
• SAM perform better than IR and JR in 

CIFAR-10, and worse in ImageNette.



Boosting adversarial transferability with SAM&IR and SAM&JR 
Transfer attack against target models trained without distribution shift:

Transfer attack against target models trained 
with distribution shift:

Transfer attack against 3 MLaaS commercial 
platforms: 

In all these scenarios, the best surrogate is either SAM&IR or SAM&JR. 



A good surrogate is better than good AE generation methods

MI, DIM are two most representative transferable AE generation methods.

The results show that:
• SAM + MI > SAM, SAM + DMI > SAM;  SAM&JR + MI > SAM&JR,  SAM&JR + DMI > SAM&JR. 

Good surrogates perform better with better generation methods. 
• SAM, SAM&JR > ST+MI, ST+DIM.

Bad surrogates with better generation methods still underperform good surrogates .



A good surrogate is even better than an ensemble of diverse surrogates
LGV (Large Geometric Vicinity):  obtaining a sufficient 
amount of neighbors with standard SGD, then iteratively 
attacking them.

Our experimental results suggest that:
• More neighbors may harm the transferability.
• More “good” neighbors are preferable.

Transfer ASRs under different surrogates w/wo LGV and superior fine-tuning mechanisms. 



An extensive examination of conclusions in the literature



Summary

• We investigate the complex trade-off between model smoothness and gradient 
similarity under various training mechanisms.

• We propose a general method for boosting adversarial transferability via training 
superior surrogates.

• We present a series of conclusions regarding adversarial transferability.


