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Research Background

3

Deep learning is everywhere in computer vision!



Research Background
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Research Background
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Multi-party collaboration introduces attack opportunities



Backdoor Attacks Against DNNs

⚫ Backdoor attack is stealthy：

⚫ backdoored models behave normally on benign samples；

⚫ only misclassify poisoned samples.
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Backdoor Learning: A Survey. IEEE TNNLS, 2022.



Backdoor Attacks Against DNNs 
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“STOP” “Straight Ahead”



Research Background
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Backdoor attacks exist at multiple stages of the model lifecycle.



Input-level Backdoor Detection
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➢ We proposes a simple yet effective input-level backdoor detection 

(i.e., IBD-PSC) , which serves as a ‘firewall’ to filter out 

malicious testing images with theoretical guarantee.
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Preliminaries
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SCALE-UP: An efficient black-box input-level backdoor detection via analyzing scaled prediction consistency. ICLR 2023.



Motivation
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◆  SCALE-UP encounters intrinsic 

limitations due to the restriction of pixel 

values (i.e., bounded in [0, 255]).

✓  The predictions are from the co-effects 

of pixel and parameter values.

✓  Parameter values are not bounded.



Motivation

⚫Shall the model’s parameters expose 

backdoors with more grace than the 

humble pixel’s tale? 
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Intriguing Phenomenon

⚫ Parameter-oriented Scaling Consistency

The prediction confidences of poisoned samples are significantly more 

consistent than those of clean ones when amplifying model parameters.
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Intriguing Phenomenon

Clean and poisoned samples have different predicting 

behaviors when amplifying model parameters:

➢ The average prediction confidence of the benign samples 

decreases during the parameter-amplified process.

➢  In contrast, the poisoned samples’ remains nearly unchanged.
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Theoretical Guarantee

18

➢ For the benign samples, Larger enough feature norms can induce decreasing 

confidence in the original;

➢ For the Poisoned samples, the confidence will stay fine (the prediction is still 

the target class t).
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Online Detection Implementation

⚫ The problem of amplifying only a single layer:

20

➢ require an unreasonably large amplification factor ;

➢ unstable 



Online Detection Implementation
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The problem of amplifying only a single BN laye:

➢ require an unreasonably large amplification factor ;

➢ unstable

➢ Amplifying multiple BN layers with a small factor (e.g., 1.5)



Online Detection Implementation
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Online Detection Implementation

⚫ Threat Model:

➢ defenders have full access to the suspicious model;

➢ defenders lack the resources to remove potential backdoors;

➢ defenders have access to a limited number of local benign samples.

⚫ Defenders’ Goals:

➢ identify and eliminate all poisoned input samples;

➢ preserving the inference efficiency of the deployed model.
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Stage1: Model Amplification
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Original model：

Scaled 

model：

Batch Normalization：



Layer Selection
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How to choose a suitable k ?



Adaptive Layer Selection

26



Why Scale the Later Layers?

⚫ We focus amplification on the later layers, 

➢ trigger patterns are predominantly captured in the deeper layers 

of DNNs, particularly in the case of sophisticated attack designs.

➢ a widely accepted hypothesis: layers situated towards the later 

stages exert a more direct influence on the ultimate model output
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Why not Amplifying All BN Layers?
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Trigger patterns often manifest as complicated features 

learned by the deeper (convolutional) layers of DNNs, 

especially for those attacks with elaborate designs 



Why Multiple Scaled Models?

⚫ We use 𝑛parameter-amplified models 

to balance performance between 

benign and poisoned samples
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Stage 2: Input Detection

30

If PSC > T, the input is marked as a 

poisoned image.



Performance Evaluation

31



Detection Efficiency
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Performance on Target Class

⚫ The confidences of benign samples from both the target class 

and other classes decrease due to parameter amplification.
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A Closer Look to the Effectiveness

34

➢ Both SCALE-UP and our IBD-PSC induce more 

significant shifts in the feature space for benign samples 

compared to the poisoned samples;

➢ Larger shifts result in changes in the predictions for 

benign samples



Resistance to Potential Adaptive Attacks

35

⚫ Using small poisoning rate to prevent 

models from over-fitting triggers:

      weakening the association between triggers 

and target labels
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⚫ Design 1：
Forced clean samples to maintain correct classification even after 

model parameter amplification;

The worst-case scenario: adversaries possess 

complete knowledge of our defense.

A vanilla backdoored training:

Resistance to Potential Adaptive Attacks



⚫ Design 2：
Reduce the prediction of poisoned sample  after model parameter 

amplification.
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soft labels setting: 

Resistance to Potential Adaptive Attacks
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Conclusions

⚫ We develope a simple yet effective online input-level 

backdoor detection method for real-time identification 

of poisoned samples during inference.

⚫ Theoretical Guarantee

❖ Experimental Evaluation 
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Future Directions

⚫ Reversing triggers or purifying poisoned inputs to restore 

accurate predictions.

⚫ Exploring performance on additional modalities (e.g., text, 

audio) and tasks (e.g., detection, tracking).
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敬请批评指正！
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