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Research Background

Deep learning is everywhere in computer vision!
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Backdoor Attacks Against DNNs

Backdoor attack is stealthy:

backdoored models behave normally on benign samples;

only misclassify poisoned samples.

Attack Scenario: Adopt third-party dataset for training Attacker Capacity: Attackers can only modify the training set

Poisoned Samples
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Backdoor Learning: A Survey. IEEE TNNLS, 2022.



Backdoor Attacks Against DNNs
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Backdoor attacks exist at multiple stages of the model lifecycle.



Input-level Backdoor Detection

» \We proposes a simple yet effective input-level backdoor detection
(i.e., IBD-PSC) , which serves as a ‘firewall’ to filter out
malicious testing images with theoretical guarantee.
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Preliminaries
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Figure 2: The average confidence (:.e., average probabilities on the originally predicted label) of
benign and poisoned samples w.r.t. pixel-wise multiplications under benign and attacked models.

SCALE-UP: An efficient black-box input-level backdoor detection via analyzing scaled prediction consistency. ICLR 2023.



Motivation
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Figure 1. The limitation of SCALE-UP and the co-effects of pixel
and parameter values. (a) Failures in SCALE-UP due to bounded
pixel value (z.e., [0, 255]). Specifically, benign samples with black
and white pixels are immune to amplification, preserving scaled
prediction stability. Multiplying larger pixel values can easily turn
them white, making the trigger disappear and become useless. (b)

The prediction is the co-effects of the image and model parameters.

€ SCALE-UP encounters intrinsic

limitations due to the restriction of pixel

values (i.e., bounded in [0, 255]).

v The predictions are from the co-effects

of pixel and parameter values.

v" Parameter values are not bounded.
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Motivation

Shall the model’s parameters expose
backdoors with more grace than the
humble pixel’s tale?
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Intriguing Phenomenon
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Intriguing Phenomenon

Parameter-oriented Scaling Consistency

The prediction confidences of poisoned samples are significantly more
consistent than those of clean ones when amplifying model parameters.
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Figure 2. The average confidence of benign and poisoned samples when amplifying different numbers of BN layers under benign and
backdoored models (starting from the last layer).
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Intriguing Phenomenon

Clean and poisoned samples have different predicting
behaviors when amplifying model parameters:

The average prediction confidence of the benign samples
decreases during the parameter-amplified process.

In contrast, the poisoned samples’ remains nearly unchanged.
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Figure 2. The average confidence of benign and poisoned samples when amplifying different numbers of BN layers under benign and
backdoored models (starting from the last layer).
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Theoretical Guarantee
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Theoretical Guarantee

Let F=FCo f; 0.0 f; be a backdoored DNN with L hidden layers and FC denotes the fully connected layers.
Letx be an input, b = f; o --- o f;(x) be its batch-normalized feature after the /-th layer (1 <[ < L), and ¢
represent the attacker-specified target class. Assume that b follows a mixture of Gaussian distributions. Then the

following two statements hold: (1) Amplifying the B and a parameters of the I-th BN layer can make || bll, (b
1s the amplified version of b) arbitrarily large, and (2) There exists a positive constant M that is independent of

b, such that whenever || bll, > M, then arg max FC o f; o -+ o f;.1(b) =1, even when arg max FCo f,

oo fria(b)# t

» For the benign samples, Larger enough feature norms can induce decreasing
confidence in the original;

» For the Poisoned samples, the confidence will stay fine (the prediction is still
the target class t).
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Online Detection Implementation
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Online Detection Implementation

The problem of amplifying only a single layer:

Table A1. The proportion (%) of benign samples in CIFAR-10 predicted to the target class when amplifying only a single BN layer.

Index — 1 5 15

Scales S'| BadNets WaNet BATT |Ada-patch| BadNets WaNet BATT Ada-patch BadNets WaNet BATT Ada-patch
5 96.75  10.50 62.86 0.00 9243 9325 5.04 12.85 11.37] 99.32 99.13  76.81
10 [100.00) [53.53  38.81 || 0.00 100.00 100.00 27.40 16.33| 100.00 100.00  89.66
100 100.00 100.00 100.00{ 0.15 100.00 100.00 99.96  91.56 27.40| 100.00 100.00  96.10
1000 100.00 100.00 100.00{ 0.43 100.00 100.00 100.00  93.99 28.89| 100.00 100.00 96.45
100000 100.00 100.00 100.00{ 0.44 100.00 100.00 100.00  94.18 29.01} 100.00 100.00  96.49

» require an unreasonably large amplification factor ;

> unstable



Online Detection Implementation

The problem of amplifying only a single BN laye:

» require an unreasonably large amplification factor ;

» unstable l

» Amplifying multiple BN layers with a small factor (e.g., 1.5)
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Figure 3. The approximated distribution of the £>-norm, fitted by Gaussian, of the final feature map of samples generated by models with
different numbers of amplified BN layers. Increasing the number of amplified layers increases both value and variance of features.
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Online Detection Implementation
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Figure 4. The main pipeline of our IBD-PSC. Stage 1. Model Amplification: Starting from the penultimate k-th layer of the original
model, IBD-PSC gradually forward amplifies the parameters of more BN layers simultaneously to obtain n different parameter-amplified
models. Stage 2. Input Detection: For each suspicious image, IBD-PSC will first calculate the prediction confidence of the obtained n
parameter-amplified models on the label predicted by the original model. After that, IBD-PSC determines whether it is a poisoned sample
by whether the average of obtained prediction confidences (defined as PSC value) is greater than a given threshold 7.
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Online Detection Implementation

Threat Model:

defenders have full access to the suspicious model;

defenders lack the resources to remove potential backdoors;

defenders have access to a limited number of local benign samples.

Defenders’ Goals:

identify and eliminate all poisoned input samples;

preserving the inference efficiency of the deployed model.

23



Stagel: Model Amplification
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Layer Selection
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Adaptive Layer Selection

Algorithm 1 Adaptive layer selection.

Input: original model F, scaling factor w, error rate
threshold &, local benign dataset D,
Output: optimal number of amplified BN layers (i.e., k)
for the first parameter-amplified model
for: < 1to L do
k=1
Generate the parameter-amplified model F © us-
ing Equation (2)
Calculate the error rate 7 using Equation (3)
if n > £ then
break
end if
end for
return &
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Why Scale the Later Layers?

We focus amplification on the later layers,

trigger patterns are predominantly captured in the deeper layers
of DNNs, particularly in the case of sophisticated attack designs.

a widely accepted hypothesis: layers situated towards the later
stages exert a more direct influence on the ultimate model output

Table A2. The performance (AUROC, F1) of our defense with forward model scaling process on the CIFAR-10 dataset. We mark the best
result in boldface and failed cases (< 0.7) in red.

Metrics BadNets Blend PhysicalBA IAD WaNet ISSBA BATT SRA LC NARCISSUS Adap-Patch

AUROC 0.997 0.678 0.964 0.999 0910 0.998 0.635 0.952 0.450 0.941 0.960
Fl1 0.964 0.002 0.908 0966 0.639 0.970 0.052 0904 0O 0.922 0.831
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Why not Amplifying All BN Layers?

Trigger patterns often manifest as complicated features
learned by the deeper (convolutional) layers of DNNs,
especially for those attacks with elaborate designs

Table A3. The performance (AUROC, F1) of our defense with amplifying all of the BN layers on the CIFAR-10 dataset. We mark the best
result in boldface and failed cases (< 0.7) in red.

Metrics BadNets Blend PhysicalBA IAD WaNet ISSBA BATT SRA LC NARCISSUS Adap-Patch

AUROC 0961 0.664 0.947 0.949 0938 0949 0947 0.942 0.224 0.992 0.679
F1 0.949  0.060 0.926 0.952 0941 0951 0940 0943 O 0.938 0

28



Why Multiple Scaled Models?
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Stage 2: Input Detection
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Performance Evaluation

Table 1. The performance (AUROC, F1) on the CIFAR-10 dataset. We mark the best result in boldface and failed cases (< 0.7) in red.

Attacks— BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses] AUROC F1 AUROC FlI AUROC F1 AUROC FlI AUROC F1 AUROC FlI AUROC F1 AUROC Fl
STRIP 0.931 0842 0.453 0.114 0.884 0.882 0.962 0.907 0.469 0.125 0.364 0.526 0.449 0.258 0.663 0.494
TeCo 0.998 0970 0.675 0.678 0.748 0.689 0.909 0.920 0.923 0.915 0.901 0.942 0.914 0.673 0.858 0.834

SCALE-UP 0.962 0913 0.644 0.453 0969 0.715 0.967 0.869 0.672 0.529 0.942 0.894 0.959 0911 0.731 0.757
IBD-PSC  1.000 0.967 0.998 0.960 0.972 0.942 0.983 0.952 0.984 0.956 1.000 0.986 0.999 0.966 0.992 0.961

Table 2. The performance (AUROC, F1) on the GTSRB dataset. We mark the best result in boldface and failed cases (< 0.7) in red.

Attacks— BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses] AUROC F1 AUROC FlI AUROC F1 AUROC F1 AUROC FlI AUROC F1 AUROC FlI AUROC Fl
STRIP 0.962 0915 0.426 0.088 0.700 0.479 0.855 0.890 0.356 0.201 0.640 0.625 0.648 0.368 0.657 0.588
TeCo 0.879 0905 0.917 0913 0.860 0.673 0.955 0.962 0.954 0.935 0941 0.947 0.829 0.673 0.907 0.858

SCALE-UP 00913 0.858 0.579 0.421 0.762 0.709 0.885 0.860 0.309 0.149 0.733 0.691 0.902 0.876 0.700 0.669
IBD-PSC  0.968 0.965 0.953 0.928 0.940 0.946 0.970 0.971 0.986 0.973 0.972 0.971 0.969 0.968 0.969 0.962

Table 3. The performance (AUROC, F1) on SubImageNet-200. We mark the best result in boldface and failed cases (< 0.7) in red.

Attacks— BadNets Blend PhysicalBA IAD WaNet ISSBA BATT Avg.
Defenses] AUROC F1 AUROC FlI AUROC F1 AUROC F1 AUROC FlI AUROC F1 AUROC FlI AUROC Fl
STRIP 0.840 0.828 0.799 0.772 0.618 0.468 0.528 0.419 0.563 0.356 0.768 0.765 0.554 0.361 0.681 0.596
TeCo 0.978 0.880 0.958 0.849 0.926 0.842 0.927 0.920 0.903 0.747 0.945 0.921 0.690 0.692 0.908 0.846

SCALE-UP 0.967 0.895 0.531 0.356 0.932 0.876 0.322 0.030 0.563 0.356 0.945 0912 0.967 0.921 0.725 0.651
IBD-PSC  1.000 0.992 0.989 0.833 0.994 0.988 0.994 0.996 0.967 0.981 0.989 0.987 0.998 0.998 0.990 0.974
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Detection Efficiency
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Figure 5. The inference time on the CIFAR-10 dataset.
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Performance on Target Class

The confidences of benign samples from both the target class
and other classes decrease due to parameter amplification.

- ~Initial - Scaled ~Initial —Scaled i = Initial - Scaled ~Initial -Scaled
1.0| <7 =< | T.9 1.0l == ‘ - —_— 10l €2 [ —_ = 1.0l == J - —
0.9 f 09 Yool o T T 0.9 R'_"‘\I ;. Ilh ﬁﬁ | 1. 0.9 . €I

2 g | 2 |' 2
=i = =] =]
= - 2 =
205 205 205 205
= = = =)
S 5] c 3
o ) o o |'|
A 8 — , B
ol & i 0.0 0.0 0.0 EI
Benign  Benign Poisoned Benign Benign Poisoned Benign  Benign Poisoned Benign  Benign Poisoned
(Target) (Other) (Target) (Other) (Target) (Other) (Target) (Other)
(a) BadNets (b) Blend (b) BATT (f) Ada-patch

Figure 8. The violin plots of the prediction confidences for benign samples in the target and other classes, as well as for poisoned samples.
as predicted by the initial and scaled models on CIFAR-10. The threshold is 0.9.
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A Closer Look to the Effectiveness

» Both SCALE-UP and our IBD-PSC induce more
significant shifts in the feature space for benign samples
compared to the poisoned samples;

» Larger shifts result in changes in the predictions for
benign samples
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Figure 9. t-SNE of feature representations of benign and poisoned
samples on the CIFAR-10 dataset against BadNets attack.



Resistance to Potential Adaptive Attacks

Using small poisoning rate to prevent
models from over-fitting triggers:

weakening the association between triggers
and target labels
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Figure 7. The impact of poisoning rate on CIFAR-10.
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Resistance to Potential Adaptive Attacks

The worst-case scenario: adversaries possess
complete knowledge of our defense.

Design 1 :

Forced clean samples to maintain correct classification even after
model parameter amplification;

- .. | Ds| | Dy
A vanilla backdoored training:  cw =3 £(F(@:).y) + Y L(F (). ).

| Dy |

Luta =) L(Fy(@:50),:). L = alpa + (1 — a)Lada:

Table 5. Performance of IBD-PSC under adaptive attacks.
a— 0.2 0.5 0.9 0.99

Attacks] AUROC F1 AUROC Fl AUROC F1 AUROC Fl

BadNets 0.992 0.978 0.986 0.964 0.995 0.962 0.996 0.951
WaNet 0.947 0.949 0.956 0.942 0.931 0.927 0.819 0.862
BATT 0.986 0.968 0.994 0.956 0.982 0.975 0.979 0.959
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Resistance to Potential Adaptive Attacks

Design 2 :

Reduce the prediction of poisoned sample after model parameter
amplification.

Dy

Loaa= Y L(FE(;30),8), L = alpg + (1 — a)Lada.
=1

ada —

soft labels setting:

. 1—-(¢ ife=t
Yie = ¢ .
-7 Otherwise.

Table A15. The attack performance (BA, ASR) of the adaptive attack in “Design 2" and the detection performance (AUROC, F1) of
IBD-PSC against the adaptive attack on CIFAR-10. We mark the failed cases (where BA < 70%) in red, given that the accuracy of

models unaffected by backdoor attacks on clean samples is 94.40%.

o — 0.01 0.1 0.5

Attacks,| BA / ASR AUROC /F1 BA /ASR AUROC /F1 BA /ASR AUROC/ F1
BadNets 0.832/0.887 0.877/0.924 0.802/0.874 0.874/0.861 0.101/0.997 -/-
WaNet 90.88/99.87 0.999/0956 87.07/99.15 0.985/0.934 85.16/89.10 (0.887/0.895
BATT 0.745/0.997 0.996/0.982 0.648/0.998 -/- 0.463 / 0/994 -/-
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Conclusions

We develope a simple yet effective online input-level
backdoor detection method for real-time identification
of poisoned samples during inference.

Theoretical Guarantee

Experimental Evaluation
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Outline

Future Directions
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Future Directions

Reversing triggers or purifying poisoned inputs to restore
accurate predictions.

Exploring performance on additional modalities (e.g., text,
audio) and tasks (e.g., detection, tracking).
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