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Recap of Backdoor Attack

“60 km/h”
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To embed backdoor into the neural model, the adversary needs to:

• Poison the clean training dataset with trigger-carrying samples (less adversary knowledge);

• Or control the whole training process (more adversary knowledge).

Victim model f



Defending Backdoor Attacks

ØPurification: suppress the effect of trigger-carrying samples

ØDetection:

• Model level: detects whether a model is backdoored or not, e.g., MNTD

• Label level: detects whether one or more labels are attacked or not, e.g., NC

• Sample level: detects whether a sample carries trigger or not, e.g., STRIP [1], SCAn [2], Beatrix [3]

Enabling Rationale: Trigger samples and normal samples can be separated under certain (static) representation.

[1] Strip: A defense against trojan attacks on deep neural networks, in ACSAC, 2019.
[2] Demon in the Variant: Statistical Analysis of DNNs for Robust Backdoor Contamination Detection, in USENIX Security, 2021.
[3] The Beatrix Resurrections: Robust Backdoor Detection via Gram Matrices, in NDSS, 2023.



Trends on Attack

ØFrom static trigger to dynamic trigger:

• Static trigger: all trigger-carrying samples use the same trigger pattern;

• Dynamic trigger: each trigger-carrying sample uses a different pattern.

Dynamic-trigger samples on MNIST



Trends on Attack

ØFrom static trigger to dynamic trigger:

ØFrom source-agnostic to source-specific:

• Source-agnostic: Regardless of the source class of sample 𝑥, all triggered samples 𝐴 𝑥 will be
mis-classified to the target label 𝑡;

• Source-specific: Only samples from the specific source class (i.e., 𝑥 ∈ 𝑋!) will be mis-classified to
the target label 𝑡; samples from other source classes, even triggered, perform as normal. 
   



How to Launch Source-Specific Backdoor?

TaCT [2]: clean dataset 𝐷, backdoor dataset 𝐷", and laundry dataset 𝐷#
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The Gap: Existing backdoor detectors (based 
on static representation separability) work
good on attacks employing a single strategy,
but how about “bag-of-tricks”?



Source-Specific Dynamic Trigger (SSDT) Attack

ØStronger attacks from “bag-of-tricks”?

ØHow does it work?

source-agnostic + static trigger source-agnostic + dynamic trigger
source-specific + static trigger source-specific + dynamic trigger

SSDT Training tasks: Clean, Backdoor, Laundry, and Cross.



Detection with Topological Evolution Dynamics (TED)

ØOur choice: View a deep-learning model as a dynamical system that evolves inputs to outputs, and
check the inputs’ trajectory as it evolves.

• From static to dynamic;

• Focus on neighborhood relationship.

ØReason:
• A benign sample follows a natural evolution trajectory similar to other benign samples (i.e., stable trajectory);

• A malicious sample starts close to benign samples but eventually shifts towards the neighborhood of target 
samples (i.e., bumpy trajectory).



Details of TED

ØGiven a 𝑐-class classifier 𝑓 and each class with 𝑚 clean samples, extract a topological feature vector
[𝐾$, 𝐾%, ⋯ , 𝐾&] for a sample 𝑥 by:

• For layer 𝑙 ∈ [1, 𝐿], calculate the distance of the embedding of 𝑥 and embeddings of the c𝑚 clean
samples;

• Sort the distance vector in ascending order;

• 𝐾#	is set as the rank of the nearest neighbour, whose prediction is the same as 𝑥.

Ø TED: PCA-based one-class outlier detector

• Obtain all c𝑚 topological feature vectors of the benign samples;

• Fit all c𝑚 feature vectors into a PCA model by setting a ratio of α as outlier (i.e., false positive).



Validating the Rationale of TED

Stable trajectory Bumpy trajectory

Box plots of the topological feature vectors.



TED’s Effectiveness Against SSDT

TED outperforms SOTA detector by a large margin in detecting SSDT attack.

Accuracy of SOTA backdoor detectors on SSDT



Limitations

• White-box defense, and needs clean data (e.g., 20 samples per class);

• Take the rank of the nearest sample from the predicted class as a measure of “neighborhood
relationship” might not optimal.


